CiteWeb id: 19980000025

CiteWeb score: 9864

DOI: 10.1109/ICEC.1998.699146

Evolutionary computation techniques, genetic algorithms, evolutionary strategies and genetic programming are motivated by the evolution of nature. A population of individuals, which encode the problem solutions are manipulated according to the rule of survival of the fittest through "genetic" operations, such as mutation, crossover and reproduction. A best solution is evolved through the generations. In contrast to evolutionary computation techniques, Eberhart and Kennedy developed a different algorithm through simulating social behavior (R.C. Eberhart et al., 1996; R.C. Eberhart and J. Kennedy, 1996; J. Kennedy and R.C. Eberhart, 1995; J. Kennedy, 1997). As in other algorithms, a population of individuals exists. This algorithm is called particle swarm optimization (PSO) since it resembles a school of flying birds. In a particle swarm optimizer, instead of using genetic operators, these individuals are "evolved" by cooperation and competition among the individuals themselves through generations. Each particle adjusts its flying according to its own flying experience and its companions' flying experience. We introduce a new parameter, called inertia weight, into the original particle swarm optimizer. Simulations have been done to illustrate the significant and effective impact of this new parameter on the particle swarm optimizer.

The publication "A modified particle swarm optimizer" is placed in the Top 1000 of the best publications in CiteWeb. Also in the category Computer Science it is included to the Top 1000. Additionally, the publicaiton "A modified particle swarm optimizer" is placed in the Top 100 among other scientific works published in 1998.
Links to full text of the publication: