CiteWeb id: 20160000050

CiteWeb score: 720

DOI: 10.1103/PhysRevLett.116.061102

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^(−21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410 +160/−180  Mpc corresponding to a redshift z=0.09 +0.03/−0.04. In the source frame, the initial black hole masses are 36+5−4M_⊙ and 29+4−4M_⊙, and the final black hole mass is 62+4−4M⊙, with 3.0+0.5−0.5M_⊙c^2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

The publication "Observation of Gravitational Waves from a Binary Black Hole Merger" is placed in the Top 10000 in category Physics.
Links to full text of the publication: