CiteWeb id: 20120000737

CiteWeb score: 720

Bridge regression, a special family of penalized regressions of a penalty function Σ|βj|γ with γ ≤ 1, considered. A general approach to solve for the bridge estimator is developed. A new algorithm for the lasso (γ = 1) is obtained by studying the structure of the bridge estimators. The shrinkage parameter γ and the tuning parameter λ are selected via generalized cross-validation (GCV). Comparison between the bridge model (γ ≤ 1) and several other shrinkage models, namely the ordinary least squares regression (λ = 0), the lasso (γ = 1) and ridge regression (γ = 2), is made through a simulation study. It is shown that the bridge regression performs well compared to the lasso and ridge regression. These methods are demonstrated through an analysis of a prostate cancer data. Some computational advantages and limitations are discussed.

The publication "Penalized Regressions: The Bridge versus the Lasso" is placed in the Top 10000 in category Mathematics.
Links to full text of the publication: