# The Calculation of Posterior Distributions by Data Augmentation

**Wing Hung Wong**

CiteWeb id: 20120000051

CiteWeb score: 3742

The idea of data augmentation arises naturally in missing value problems, as exemplified by the standard ways of filling in missing cells in balanced two-way tables. Thus data augmentation refers to a scheme of augmenting the observed data so as to make it more easy to analyze. This device is used to great advantage by the EM algorithm (Dempster, Laird, and Rubin 1977) in solving maximum likelihood problems. In situations when the likelihood cannot be approximated closely by the normal likelihood, maximum likelihood estimates and the associated standard errors cannot be relied upon to make valid inferential statements. From the Bayesian point of view, one must now calculate the posterior distribution of parameters of interest. If data augmentation can be used in the calculation of the maximum likelihood estimate, then in the same cases one ought to be able to use it in the computation of the posterior distribution. It is the purpose of this article to explain how this can be done. The basic idea ...

Links:
## HTML code:

## Wiki code: