CiteWeb id: 20060000184

CiteWeb score: 2675

DOI: 10.1007/s10107-004-0559-y

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics are also considered that allow faster performance. This method has been implemented in the IPOPT code, which we demonstrate in a detailed numerical study based on 954 problems from the CUTEr test set. An evaluation is made of several line-search options, and a comparison is provided with two state-of-the-art interior-point codes for nonlinear programming.