CiteWeb id: 20030000254

CiteWeb score: 3102

DOI: 10.1103/PhysRevLett.91.146401

: The electron density, its gradient, and the Kohn-Sham orbital kinetic energy density are the local ingredients of a meta-generalized gradient approximation (meta-GGA). We construct a meta-GGA density functional for the exchange-correlation energy that satisfies exact constraints without empirical parameters. The exchange and correlation terms respect {\it two} paradigms: one- or two-electron densities and slowly-varying densities, and so describe both molecules and solids with high accuracy, as shown by extensive numerical tests. This functional completes the third rung of ``Jacob's ladder'' of approximations, above the local spin density and GGA rungs.