Autors:

CiteWeb id: 20020000062

CiteWeb score: 6021

DOI: 10.1109/INFCOM.2002.1019408

This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2-6 times more energy than S-MAC for traffic load with messages sent every 1-10 s.

The publication "An energy-efficient MAC protocol for wireless sensor networks" is placed in the Top 10000 of the best publications in CiteWeb. Also in the category Computer Science it is included to the Top 1000. Additionally, the publicaiton "An energy-efficient MAC protocol for wireless sensor networks" is placed in the Top 100 among other scientific works published in 2002.
Links to full text of the publication: