Autors:

CiteWeb id: 20020000015

CiteWeb score: 9732

A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance

The publication "Mean shift: a robust approach toward feature space analysis" is placed in the Top 1000 of the best publications in CiteWeb. Also in the category Mathematics it is included to the Top 100. Additionally, the publicaiton "Mean shift: a robust approach toward feature space analysis" is placed in the Top 100 among other scientific works published in 2002.
Links to full text of the publication: