CiteWeb id: 19960000180

CiteWeb score: 3506

DOI: 10.1145/235815.235821

The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the randomized, incremental algorithms for convex hull and delaunay triangulation. We provide empirical evidence that the algorithm runs faster when the input contains nonextreme points and that it used less memory. computational geometry algorithms have traditionally assumed that input sets are well behaved. When an algorithm is implemented with floating-point arithmetic, this assumption can lead to serous errors. We briefly describe a solution to this problem when computing the convex hull in two, three, or four dimensions. The output is a set of “thick” facets that contain all possible exact convex hulls of the input. A variation is effective in five or more dimensions.

The publication "The quickhull algorithm for convex hulls" is placed in the Top 10000 of the best publications in CiteWeb. Also in the category Mathematics it is included to the Top 1000. Additionally, the publicaiton "The quickhull algorithm for convex hulls" is placed in the Top 1000 among other scientific works published in 1996.
Links to full text of the publication: