CiteWeb id: 19900000121

CiteWeb score: 3898

We report the parameters for a new generic force field, DREIDING, that we find useful for predicting structures and dynamics of organic, biological, and main-group inorganic molecules. The philosophy in DREIDING is to use general force constants and geometry parameters based on simple hybridization considerations rather than individual force constants and geometric parameters that depend on the particular combination of atoms involved in the bond, angle, or torsion terms. Thus all bond distances are derived from atomic radii, and there is only one force constant each for bonds, angles, and inversions and only six different values for torsional barriers. Parameters are defined for all possible combinations of atoms and new atoms can be added to the force field rather simply. This paper reports the parameters for the "nonmetallic" main-group elements (B, C, N, 0, F columns for the C, Si, Ge, and Sn rows) plus H and a few metals (Na, Ca, Zn, Fe). The accuracy of the DREIDING force field is tested by comparing with (i) 76 accurately determined crystal structures of organic compounds involving H, C, N, 0, F, P, S, CI, and Br, (ii) rotational barriers of a number of molecules, and (iii) relative conformational energies and barriers of a number of molecules. We find excellent results for these systems.

The publication "DREIDING: a generic force field for molecular simulations" is placed in the Top 10000 of the best publications in CiteWeb. Also in the category Chemistry it is included to the Top 1000. Additionally, the publicaiton "DREIDING: a generic force field for molecular simulations" is placed in the Top 1000 among other scientific works published in 1990.
Links to full text of the publication: