Autors:

CiteWeb id: 19810000041

CiteWeb score: 4936

DOI: 10.1063/1.328693

A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress‐strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress‐strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

The publication "Polymorphic transitions in single crystals: A new molecular dynamics method" is placed in the Top 10000 of the best publications in CiteWeb. Also in the category Physics it is included to the Top 1000. Additionally, the publicaiton "Polymorphic transitions in single crystals: A new molecular dynamics method" is placed in the Top 100 among other scientific works published in 1981.
Links to full text of the publication: